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A finite difference approach for the calculation of perturbed 
oscillator energies 

V Fack and G Vanden Berghe 
Seminarie voor Wiskundige Natuurkunde, Rijksuniversiteit-Gent, Krijgslaan 281-S9, B 
9000 Gent, Belgium 

Received 15 May 1985 

Abstract. A simple numerical method for calculating eigenvalues and corresponding 
eigenvectors of the Schrodinger equation for a perturbed oscillator is described. The 
derived results are compared with previously derived numerical data and with available 
exact values. 

1. Introduction 

Recently there has been a great deal of interest in the analytical as well as the numerical 
study of the one-dimensional anharmonic oscillator governed by the potential 

V(x) =x2+Ax2/(1+gx2). (1.1) 

The solutions of the one-dimensional Schrodinger equation with a potential (1.1) are 
important in several areas of physics. As summarised by Mitra (1978), the potential 
(1.1) is related to certain specific models in laser theory (Haken 1970) and also to a 
zero-dimension field theory with a nonlinear Lagrangian (Risken and Vollmer 1967). 

Several lines of approach have been followed in the investigation of the eigenvalues 
and eigenfunctions of the differential equation 

[D*+(E  - V(x))]y(x)=d2y(x)/dx2+(E - V ( X ) ) Y ( X ) = ~ ,  (1.2) 

where E denotes the eigenvalue parameter. The ground state and the first two energy 
levels were first computed by Mitra (1978) for a large range of A and g (A, g = 0 to 
100) within the variational Rayleigh-Ritz framework. However, for large values of g 
some difficulties are encountered. Nevertheless he guarantees an accuracy of three 
decimal places. Kaushal (1979) has used a relatively complex perturbation algorithm 
in order to obtain an asymptotic expansion of the energy spectrum. He restricted his 
calculation to a rather small range of g (g = 0 to 1) and a large range of A ( A  = 0 to 
100). Bessis and Bessis (1980) have reinvestigated both within a variational and a 
perturbational scheme the energy eigenvalues by taking advantage of a two-parameter 
A and g-scale transformation. They claimed to have obtained eight significant figures. 
Lai and Lin (1982) have determined the ground and the first three excited energy levels 
by forming the [6,6] Pad6 approximants to the energy perturbation series for the 
interaction (1.1) as obtained from the hypervirial relations. They note that their 
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calculated values of E,  are closer to the results of Mitra than to those obtained by 
Bessis and Bessis. Their work can be considered as an improvement over the perturba- 
tive scheme of Kaushal ( 1979). Killingbeck (1979) and Galicia and Killingbeck (1979) 
combined some basic ideas of first-order perturbation theory with methods of direct 
numerical integration to derive accurate eigenvalues for one-dimensional Schrodinger 
equations. All these numerical treatments are concentrated on the A > 0 case since 
they are applicable only as long as A + 1 > 0. A set of exact solutions to the Schrodinger 
equation (1.2) with V ( x )  given by (1.1) has been constructed by Flessas (1981, 1982), 
Varma (1981), Lai and Lin (1982) and Whitehead et al (1982). The existence of such 
exact solutions is demonstrated under the conditions A < 0, g > 0 and A = A ( g ) ,  E = 
E ( g ) ;  in view of these restrictions on A and g, these solutions do not constitute the 
complete set of solutions. 

In this paper a direct numerical integration method will be discussed for calculating 
eigenvalues and eigenstates of the Schrodinger equation (1.2) by introducing a finite 
difference representation of D * y ( x ) .  Section 2 explains the simple mathematics which 
form the basis of our method. The appropriate formulae are presented. In 0 3 we 
compare some of our results with those of previously numerical calculations and exact 
solutions. It will be noticed that for other potentials different from (1.1) the method 
is also appropriate. 

2. Numerical method: theory 

It is well known (Froberg 1979) that D2 can be expressed as a series expansion of 
only even powers of the central difference operator, i.e. 

where h is the considered step length and 6 applies on a function y ( x )  as follows: 

( X )  = y ( x + f h ) - y ( x - i h  ). 

Although the solutions of (1.2) are explicitly defined in [-a, +a?], it should be noted 
that these solutions are either of even or odd parity, i.e. y ( x )  = * y ( - x ) ,  so that the 
determination of y ( x )  can be restricted to the region [0, +a?]. Furthermore we shall 
suppose that the wavefunctions are restricted to obey the Dirichlet boundary condition 
y ( x )  = 0 at some x value R. An acceptable R value will be guessed numerically. If 
moreover the interval [0, RI is subdivided into equal parts of length h and the second- 
order derivative is approximated by some terms of (2.1) the Schrodinger equation (1.2) 
transforms into an algebraic eigenvalue problem of the form 

(2.3) 

where y = (y(O),  y ( h ) ,  y ( 2 h ) ,  . . . , y(R)IT, K is proportional to E, I is the unity matrix 
and the structure of the matrix A depends on the number of terms which are withheld 
in the series expansion (2.1). Taking into account one, two, or three terms in the 
expansion (2.1) results respectively in a tridiagonal, pentadiagonal or heptadiagonal 
form for the matrix (A - KZ). Denoting x = kh ( k  = 0,1,. . . , n ; nh = R )  y ( x )  = y (  kh)  = 
y k  and considering that y - k  = *ykr depending on the parity of the considered eigenfunc- 

(A - KZ) y = 0 
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tion, the tridiagonal form of (A - K I )  reads 

0 0 
1 0 

( ~ 2 - K  1 

1 
0 

* . .  
. . .  
. . .  

- K 
1 

with ak = -(2+ V(kh)), K = -Eh2, and 

P0=2  for even-parity solutions, 

0 for odd-parity solutions. 

In an analogous way the pentadiagonal form of (A - K I )  can be denoted as 

Y o -  K 60 EO 0 
16 Y ~ + S ~ - K  16 -1 
-1 16 Y Z -  K 16 

0 -1 16 7 3 - K  

. . .  -1 16 

. . .  0 -1 

. . .  0 0 

with 

Y k  = - 12( 5 1  2 + V( kh I) ,  
and 

60=32, ~ 0 = - 2 , 8 ~ = - 1  

8 0  = 0, E g  = 0, SI = 1 

0 0 
0 0 

-1 0 
16 -1 

For the heptadiagonal case one obtains in a similar way for ( A -  K I )  

Yn-2 - K 16 

-1 16 
16 Y n - 1 - K  

K = -12Eh2, 

for even-parity solutions, 

for odd-parity solutions. 

70- K PO 70 C O  0 0 0 0 
270 T ~ + P ~ - K  T~ -27 2 0 0 0 
-27 P2 7 2 -  K 270 -27 2 0 0 

2 -27 270 73- K 270 -27 2 0 
0 2 -27 270 7 4 - K  270 -27 2 

0 
0 

with 

(2.5) 

* . .  0 
. . .  0 
. . .  0 
. . .  0 
. . .  0 

. . .  2 -27 -270 7 " - 1 - K  270 

. . .  0 2 -27 270 V n - K  

?-/k =-180(49/18+ v(kh)), K = -180Eh2, (2.11) 
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and 

llo = 540, T~ = -54, uo = 4, p I  = -27, r1 = 272,112 = 272 

p,, = 0, T~ = 0, uo = 0, p1 = 27, T~ = 268, p2 = 268 

It has to be noted that in each of the three cases considered, one can easily deduce 
the error T,  introduced by replacing D2y(x) by one, two or three terms of (2.1) 
respectively, acting on y(x),  i.e. for 

h W y ( x )  = S2y(x), T = - &h2D4y( 6 )  (2.13) 

h2D2y(x) = (82-&S")y(x), 7 = $jh4D6y(5) 5 E  ro, R I  (2.14) 

(2.15) 

By this it is clear that the accuracy of our solutions increases roughly by a factor h2 
by adding one more term in the approximation for 0'. 

There exist a lot of algorithms to deduce the lowest eigenvalues and their correspond- 
ing eigenvectors for matrices of the form (2.4), (2.7) and (2.10). Since each of the 
constructed matrices have, with the exception of some of the first rows, a symmetric 
structure, it seems favourable in the first instance to transform them by means of one 
similarity transformation to complete symmetric ones. Following Wilkinson (1965) it 
is interesting for the calculation of eigenvalues of band symmetric matrices to reduce 
them to a tridiagonal form by preliminary transformations. We have applied this idea 
to the matrices (2.7) and (2.10) by using Rutishauser's (1963) method based on plane 
rotations. Once the matrices are reduced to a symmetric tridiagonal band form we 
have used the F02BEF-subroutine ofthe NAG library (NAG 1981) especially developed 
for the calculation of selected eigenvalues and corresponding eigenvectors of such 
matrices. The obtained eigenvectors are then afterwards normalised to unity by requir- 
ing JKny2 (x)  dx = 1. To reproduce these eigenvectors in a clear way, we finally have 
developed them in terms of an orthonormal set {U, 1 n = 0, . . . , N,,,,,}, the harmonic 
oscillator eigenfunctions defined by 

for even-parity solutions, 

for odd-parity solutions. 
(2.12) 

h2D2y(x) = ( S2 - A S 4  + $jS6)y(  x), T = -&h6D8y(( ) .  

U, = [2"n ! 7r1 /2~ -1 '2  e-x2/2Hn(x),  (2.16) 

with H, the Hermite polynomials. In fact the normalised y solutions are given by 
"ax 

Y ( x ) =  C anun(x). (2.17) 

The upper limit in this sum is fixed by the condition that Cr:; a i  approximates unity 
within a given accuracy. 

n = O  

3. Numerical method: applications 

To study the importance of the several terms in the series expansion (2.1), we have 
applied the three above derived approximations for ( A - K I ) ,  i.e. (2.4), (2.7) and 
(2.10), for two specific choices of A and g values for which either exact or a lot of 
numerical values for the energy values of the low-lying states are available in the 
literature. For this comparison we have kept R = 10.0 and h = 0.05. The influence of 
the R value on the final results will be discussed later. Note that by the above choices 
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for h and R the maximum dimension of the occurring matrices is 200 x 200. The 
obtained energy values (E,,,  n = 1,5) for the case ( A  = 1.0, g = 1.0) are given in table 1 
and compared with the previously calculated values of Mitra (1978), Bessis and Bessis 
(1980), Galicia and Killingbeck (1979) (corrected results mentioned in Lai and Lin 
(1982)) and Lai and Lin (1982). By comparing the results derived in the tri-, penta- 
and hepta-diagonal approaches respectively, one observed approximately an improve- 
ment of accuracy of three significant figures, a value which is of the same order of 
magnitude as predicted by the theory, i.e. h2 = (0.05)*. It is clear that our results are 
in better agreement with those of Mitra and of Galicia and Killingbeck than with those 
of Bessis and Bessis in the considered ( A ,  g)  region; this fact has also been observed 
by Lai and Lin (1982). Our results in the heptadiagonal approach (for A = 1.0 and 
g = 1.0 as well as for A = g = 0.0) have an overall accuracy of eight significant figures. 

It is evident that the heptadiagonal form yields the most accurate results. All further 
calculations are performed in that approach. To show the dependence of the results 
on the choice of the R value, we present in table 2, again for A = 1.0 and g =  1.0, the 

Table 1. Comparison of the results respectively derived in the tri-, penta- and hepta-diagonal 
approach for the potential (1.1) with exact and previously derived data for the case ( A  = 1.0, 
g = l . O ) a n d ( A = O , g = O ) .  

A = 1.0 g = 1.0 

tridiagonal 
pentadiagonal 
heptadiagonal 
Mitra (1978) 
Bessis and Bessis 

Galicia and Killing- 

Lai and Lin (1982) 

(1980) 

beck (1979) i  

El 

1.232 14098 
1.232 350 51 
1.232 350 72 
1.232 35 
1.232 372 05 

1.232 350 72 

1.232 353 53 

E2 

3.506 474 73 
3.507 387 16 
3.507 388 35 
3.507 38 
3.507 420 53 

3.507 397 06 

E3 

5.587 538 98 
5.589 775 07 
5.589 778 92 
5.589 77 
5.589 860 86 

5.589 778 94 

5.589 833 55 

E4 

7.644 011 85 
7.648 191 96 
7.648 201 21 

7.648 316 81 
- 

7.649 068 99 

E5 

9.677 291 11 
9.684 023 56 
9.684 041 95 

A = O g = O  

E2 E3 

tridiagonal 0.999 843 73 2.999 218 53 4.997 967 89 6.996 091 53 8.993 589 13 
pentadiagonal 0.999 999 87 2.999 999 09 4.999 996 75 6.999 991 81 8.999 983 24 
heptadiagonal 1.000 000 00 3.000 000 00 4.999 999 99 6.999 999 98 8.999 999 94 
exact 1 3 5 7 9 

i Corrected results reported in Lai and Lin (1982). 

Table 2. The dependence of the results on the choice of the R value. 

R El E2 E3 E4 E5 

4.0 1.232 351 55 3.507 424 42 5.590 273 52 7.652 784 69 9.708 479 44 
6.0 1.232 350 72 3.507 388 35 5.589 778 92 7.648 201 21 9.684 041 96 

10.0 1.232 350 72 3.507 388 35 5.589 778 92 7.648 201 21 9.684 041 95 
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results obtained with step length h = 0.05 but with three different R values, i.e. R = 4.0, 
6.0 and 10.0. This shows that for this particular ( A ,  g )  combination the first eight 
figures of the E,, ( n  = 1,5) results do not change anymore whenever R 2 6.0. Of course 
one should control for each parameter choice the influence of the chosen R value on 
the results. Further in this paper we shall keep R fixed at 10.0 and h = 0.05. 

In order to have an idea about the accuracy of the described method we compare 
in table 3 our results for different typical ( A ,  g )  combinations with previous results. 
For small values of A we certainly reproduce seven significant digits, while for large 
A values our results are a little less accurate, which should be attributed to our particular 
choice for the R parameter. For each of the mentioned energies we also have derived 
the corresponding eigenvectors. The coefficients a,, as defined in (2.17) are not given 
here, but are available on request to the authors. 

Table 3. Calculated values of the energy E ,  ( n  = 1,s) for the potential (1.1) obtained from 
five different methods: (a) the present work, (b) Mitra (1978), (c) Bessis and Bessis (1980), 
(d) Lai and Lin (1982), (e) Killingbeck (1979). 

A =0.1 A =0.1 A = 100.0 A = 100.0 A = 10.0 
g=o.1  g = 100.0 g=o.1 g = 100.0 g = 10.0 

E ,  a 1043 17371 1.000 841 10 9.976 178 31 1.836 334 44 1.580 022 33 
b 1.043 17 1.000 84 9.976 18 1.8364 1.580 02 
c 1.043 17371 1.000 841 1 9.976 180 09 1.836 385 0 1.580 024 9 
d 1.043 17371 .- 9.976 180 09 - - 
e 1.043 17408 1.000 841 43 9.976 180 1.836 337 3 - 

E ,  a 3.12008186 3.000 983 18 29.781 175 75 3.983 098 36 3.879 036 83 
b 3.12008 3.000 98 29.781 19 3.983 1 3.879 03 
c 3.120081 86 3.000 983 1 29.781 191 1 3.983 099 2 3.879 037 2 
d 3.12008186 - 29.781 191 11 - _- 

E,  a 5.18109478 5.000 927 54 49.292 623 58 5.928 327 90 5.832 767 52 
b 5.181 09 5.000 93 49.292 69 5.928 5.832 77 
c 5.181 09479 5.000 925 7 49.292 690 5 5.928 352 5 5.832 769 2 
d 5.18109479 - 49.292 690 50 
e 5.181 09506 5.000 927 8 49.292 69 5.928 329 3 - 

- - 

E ,  a 7.23100995 7.000 984 47 68.512 861 08 7.984 443 54 7.903 154 13 
c 7.231 00998 7.000 984 5 68.513 052 2 7.984 444 8 7.903 154 9 
d 7.23100998 - 68.513 062 23 - - 

E ,  a 9.27281691 9.000 948 53 87.444 233 67 9.949 160 38 9 882 298 66 
e 9.272818 9.000 948 87.444 7 9.949 162 - 

Several authors have studied a class of exact solutions for eigenvalues and eigenvec- 
tors of the Schrodinger equation (1.2). These solutions all correspond to negative A 
values. They yield interesting material for testing the validity and accuracy of our 
numerical method. Let us compare some of these exact even-parity solutions as deduced 
by Flessas (1981) with our numerical results. His lowest-lying solution is given in 
terms of g as follows: 

A = - 2 g ( 2  + g ) ,  (3.1) 
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E l k )  = 1 -2g, (3.2) 

y(x)  = exp(-x2/2)a(l +gx’) = auo(x) +pu2(x) ,  

where a is a normalisation factor and the U, ( n  = 0,2) are defined in (2.16). The ratio 
a / p  can also be expressed in terms of g, i.e. 

. lP = (2+g)/(J%. (3.3) 

A = -7g2-6g*g(25g2-12g+4)’/2, (3.4) 

E,(g) = 9 +  A/g = 3 -7g* (25g2 - 12g +4)’12, (3.5) 

Flessas’ second energy level corresponds with 

y(x) = exp(-x2/2)a’[1 - (8g+ A)/(2g)x2+2g(8g + A)/(12g2+ A)x“] 

= a’uo(x)+p’W2(X)+ y’u4(x), 

where a’ is again a normalisation factor and 

a ’ / p ’ =  ( A  +6g2+4g) / [h(8g+A)] ,  

pi/ y’= -A/(4&g2). 

For the odd-parity levels Varma (1981) obtains the following relations 

A = -2g(2 + 3g), 

E i (g)  = 7 +  A/g = 3( 1 -2g), 

y(x) = exp(-x2/2)ax(l + gx2) = a”u,(x) + p”u3(x), 

a”/ p ” = (2 + 3 g )/ ( J i g )  

with 

and 
A = - 13g2 - 6g * g(49g2 - 4g + 4)1/2 

E i ( g ) =  11+A/g=5-  13g*(49g2-4g+4)’l2 

y(x)  = exp(-x2/2)a‘x{l - (8g + A)/(6g)x2+ 2g(8g + A)/[3(20g2+ A)]x4} 

= a‘”u,(x) +p’I1U3(x) + yf”u5(x) 
with 

a”‘/ p”’ = J6( A + 4g + 1 Og2)/ 2( 8 g + A ) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

In table 4 we compare for g = 0.1 the exact results (3.1)-(3.14) with the calculated 
values. As well for the energies as for the eigenstates we obtain an accuracy of at least 
eight significant figures. Moreover one has to realise that besides the energy value(s) 
which correspond for a particular g and corresponding A = A(g) with an exactly 
expressible eigenstate of the polynomial type, we obtain numerically a lot more other 
eigenvalues, which have no exact counterparts. For example for g = 0.1 and A = -0.42 
we reproduce (as can be seen in table 4) quite nicely Flessas’ exact solution E,(g), 
but we also find levels at 4.197 895 89, 7.820 097 62, 11.548 628 92, . . . etc, whose 
eigenstates have a complex structure in the sense that at least twelve u,(x) ( n  = 
0,2, .  . . ,22)  are present in the expansion of the type (2.17). Note also that for this 
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Table 4. Comparison of certain exact energies and eigenvectors associated with the potential 
( 1 . 1 )  as derived by Flessas (1981) and Varma (1981) with our numerical predictions. 

Flessas (1981) g = 0.1 
Calculated 

Formula Exact values values 
~ ~ ~~ 

(3.1) A -0.42 -0.42 
(3.2) E ,  0.8 - 0.800 000 00 
(3.3) f f / P  21 /J2=  14.849242 41 14.849 242 64 
(3.4) (plus sign) A -0.67+0&3.05=-0.495 357 51 -0.495 357 51 
(3.5) (plus sign) E2 2.3 +J3.05 = 4.046 424 92 4.046 424 92 
(3.6) f f ' l P '  -0.082 068 44 -0.082 068 44 
(3.7) P ' I V '  -7 149 869 76 7.149 869 93 

Varma (1981) g=O.1 
Calculated 

Formula Exact values values 

(3.8) A -0.46 -0.46 
(3.9) EI  2.4 - 2.400 000 00 
(3.10) (1 "/ p " 23146-9.389 710 68 9.389 710 80 
(3.11) (plus sign) A -0.73 +OL= = -0.527 762 52 -0.527 762 52 
(3.12) (plus sign) E ;  3.7 +44.09 = 5.722 374 84 5.722 374 83 
(3.13) f f  "'I P"' -0.124 898 30 -0.124 898 30 
(3.14) P"'l Y"' = 5.900 564 3 1 5.900 564 56 

special class of solutions with A < - 1  the possibility exists to obtain finally negative 
energy values. 

It is evident that the presented method can be used for a variety of potential forms. 
As an example we consider the potential 

(3.15) V (  X )  = px2 + Ax4, 

Table 5. Calculated values of the energies E,  ( n  = 1, 5) for the potential (3.15) obtained 
from four different methods: (a) the present work, (b) Chan and Stellman (1963), (c) 
Killingbeck (1985), (d)  Biswas et a /  (1973). 

/ ~ = O . O h = 1 . 0  p = 1.0 A = 1.0 

E ,  a 1.060 362 09 
b 1.060 362 
C 1.060 362 09 

€2 a 3.799 673 02 
b 3.799 657 
C 3.799 673 03 

E3 a 7.455 697 86 
b 7.455 702 

a 1.392 351 64 
d 
C 1.392 351 64 

a 4.648 812 68 
d 4.648 812 70 
C 4.648 812 70 

a 8.655 049 85 
d 8.655 049 9 

1.392 351 641 530 29 

€4 a 11.644 745 16 a 13.156 803 42 
b 1 1.644 7 5 d 13.156 803 8 

E5 a 16.261 824 85 a 18.057 555 89 
- d 18.057 557 4 
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which is of particular interest in molecular physics. Biswas et al (1973) have derived 
its ground state as well as the excited energy levels using the Hill determinants. By 
using the Hellmann-Feynman theorem combined with power series expansion and  
finite difference approaches Killingbeck (1985) also derived some very accurate eigen- 
values. In table 5 we compare our results for two typical ( F ,  A )  values, i.e. (0.0,l.O) 
and (1.0, 1.0) with previously derived results. Again we have chosen h = 0.05, R = 10.0 
and we have considered the heptadiagonal approach. As can be observed we obtain 
at least an  accuracy of seven significant figures. 

4. Summary 

In this paper we have presented a purely numerical method for the determination of 
the solutions of a Schrodinger equation. We have paid special attention to the potential 
V ( x )  = x 2 +  Ax2/(1 +gx2) and have shown that our method is applicable as well for 
positive A values as negative ones. In the heptadiagonal approach we globally obtain 
seven to eight significant figures. In the cases where exact eigenvalues and  eigenvectors 
are known we reproduce both quantities very satisfactorily. We have noted that the 
method can be used for other potentials as well. 
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