A finite difference approach for the calculation of perturbed oscillator energies

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1985 J. Phys. A: Math. Gen. 183355
(http://iopscience.iop.org/0305-4470/18/17/017)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 09:17

Please note that terms and conditions apply.

A finite difference approach for the calculation of perturbed oscillator energies

V Fack and G Vanden Berghe
Seminarie voor Wiskundige Natuurkunde, Rijksuniversiteit-Gent, Krijgslaan 281-S9, B 9000 Gent, Beigium

Received 15 May 1985

Abstract

A simple numerical method for calculating eigenvalues and corresponding eigenvectors of the Schrödinger equation for a perturbed oscillator is described. The derived results are compared with previously derived numerical data and with available exact values.

1. Introduction

Recently there has been a great deal of interest in the analytical as well as the numerical study of the one-dimensional anharmonic oscillator governed by the potential

$$
\begin{equation*}
V(x)=x^{2}+\lambda x^{2} /\left(1+g x^{2}\right) \tag{1.1}
\end{equation*}
$$

The solutions of the one-dimensional Schrödinger equation with a potential (1.1) are important in several areas of physics. As summarised by Mitra (1978), the potential (1.1) is related to certain specific models in laser theory (Haken 1970) and also to a zero-dimension field theory with a nonlinear Lagrangian (Risken and Vollmer 1967).

Several lines of approach have been followed in the investigation of the eigenvalues and eigenfunctions of the differential equation

$$
\begin{equation*}
\left[D^{2}+(E-V(x))\right] y(x) \equiv \mathrm{d}^{2} y(x) / \mathrm{d} x^{2}+(E-V(x)) y(x)=0, \tag{1.2}
\end{equation*}
$$

where E denotes the eigenvalue parameter. The ground state and the first two energy levels were first computed by Mitra (1978) for a large range of λ and $g(\lambda, g=0$ to 100) within the variational Rayleigh-Ritz framework. However, for large values of g some difficulties are encountered. Nevertheless he guarantees an accuracy of three decimal places. Kaushal (1979) has used a relatively complex perturbation algorithm in order to obtain an asymptotic expansion of the energy spectrum. He restricted his calculation to a rather small range of $g(g=0$ to 1$)$ and a large range of $\lambda(\lambda=0$ to 100). Bessis and Bessis (1980) have reinvestigated both within a variational and a perturbational scheme the energy eigenvalues by taking advantage of a two-parameter λ and g-scale transformation. They claimed to have obtained eight significant figures. Lai and Lin (1982) have determined the ground and the first three excited energy levels by forming the $[6,6]$ Padé approximants to the energy perturbation series for the interaction (1.1) as obtained from the hypervirial relations. They note that their
calculated values of E_{n} are closer to the results of Mitra than to those obtained by Bessis and Bessis. Their work can be considered as an improvement over the perturbative scheme of Kaushal (1979). Killingbeck (1979) and Galicia and Killingbeck (1979) combined some basic ideas of first-order perturbation theory with methods of direct numerical integration to derive accurate eigenvalues for one-dimensional Schrödinger equations. All these numerical treatments are concentrated on the $\lambda>0$ case since they are applicable only as long as $\lambda+1>0$. A set of exact solutions to the Schrödinger equation (1.2) with $V(x)$ given by (1.1) has been constructed by Flessas (1981, 1982), Varma (1981), Lai and Lin (1982) and Whitehead et al (1982). The existence of such exact solutions is demonstrated under the conditions $\lambda<0, g>0$ and $\lambda=\lambda(g), E=$ $E(g)$; in view of these restrictions on λ and g, these solutions do not constitute the complete set of solutions.

In this paper a direct numerical integration method will be discussed for calculating eigenvalues and eigenstates of the Schrödinger equation (1.2) by introducing a finite difference representation of $D^{2} y(x)$. Section 2 explains the simple mathematics which form the basis of our method. The appropriate formulae are presented. In $\S 3$ we compare some of our results with those of previously numerical calculations and exact solutions. It will be noticed that for other potentials different from (1.1) the method is also appropriate.

2. Numerical method: theory

It is well known (Fröberg 1979) that D^{2} can be expressed as a series expansion of only even powers of the central difference operator, i.e.

$$
\begin{equation*}
h^{2} D^{2}=\delta^{2}-\frac{\delta^{4}}{12}+\frac{\delta^{6}}{90}-\frac{\delta^{8}}{560}+\frac{\delta^{10}}{3150}-\frac{\delta^{12}}{16632}+\ldots \tag{2.1}
\end{equation*}
$$

where h is the considered step length and δ applies on a function $y(x)$ as follows:

$$
\begin{equation*}
\delta y(x)=y\left(x+\frac{1}{2} h\right)-y\left(x-\frac{1}{2} h\right) \tag{2.2}
\end{equation*}
$$

Although the solutions of (1.2) are explicitly defined in [$-\infty,+\infty$], it should be noted that these solutions are either of even or odd parity, i.e. $y(x)= \pm y(-x)$, so that the determination of $y(x)$ can be restricted to the region [$0,+\infty$]. Furthermore we shall suppose that the wavefunctions are restricted to obey the Dirichlet boundary condition $y(x)=0$ at some x value R. An acceptable R value will be guessed numerically. If moreover the interval $[0, R]$ is subdivided into equal parts of length h and the secondorder derivative is approximated by some terms of (2.1) the Schrödinger equation (1.2) transforms into an algebraic eigenvalue problem of the form

$$
\begin{equation*}
(A-K I) y=0 \tag{2.3}
\end{equation*}
$$

where $y=(y(0), y(h), y(2 h), \ldots, y(R))^{\mathrm{T}}, K$ is proportional to E, I is the unity matrix and the structure of the matrix A depends on the number of terms which are withheld in the series expansion (2.1). Taking into account one, two, or three terms in the expansion (2.1) results respectively in a tridiagonal, pentadiagonal or heptadiagonal form for the matrix $(A-K I)$. Denoting $x=k h(k=0,1, \ldots, n ; n h=R) y(x)=y(k h)=$ y_{k} and considering that $y_{-k}= \pm y_{k}$, depending on the parity of the considered eigenfunc-
tion, the tridiagonal form of $(A-K I)$ reads

$$
\left(\begin{array}{cccccc}
\alpha_{0}-K & \beta_{0} & 0 & 0 & \cdots & 0 \tag{2.4}\\
1 & \alpha_{1}-K & 1 & 0 & \cdots & 0 \\
0 & 1 & \alpha_{2}-K & 1 & \cdots & 0 \\
& & & \ddots & & \\
0 & & \cdots & 1 & \alpha_{n-1}-K & 1 \\
0 & \ldots & & 0 & 1 & \alpha_{n}-K
\end{array}\right)
$$

with $\alpha_{k}=-(2+V(k h)), K=-E h^{2}$, and

$$
\begin{align*}
\beta_{0}=2 & \text { for even-parity solutions, } \tag{2.5}\\
0 & \text { for odd-parity solutions. } \tag{2.6}
\end{align*}
$$

In an analogous way the pentadiagonal form of $(A-K I)$ can be denoted as
$\left(\begin{array}{cccccccc}\gamma_{0}-K & \delta_{0} & \varepsilon_{0} & 0 & 0 & 0 & \cdots & 0 \\ 16 & \gamma_{1}+\delta_{1}-K & 16 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 16 & \gamma_{2}-K & 16 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 16 & \gamma_{3}-K & 16 & -1 & \cdots & 0 \\ & & & & \ddots & & & \\ 0 & \cdots & -1 & 16 & \gamma_{n-2}-K & 16 & & -1 \\ 0 & \cdots & 0 & -1 & 16 & \gamma_{n-1}-K & & 16 \\ 0 & \cdots & 0 & 0 & -1 & 16 & & \gamma_{n}-K\end{array}\right)$,
with

$$
\begin{equation*}
\gamma_{k}=-12(5 / 2+V(k h)), \quad K=-12 E h^{2}, \tag{2.8}
\end{equation*}
$$

and

$$
\begin{array}{ll}
\delta_{0}=32, \varepsilon_{0}=-2, \delta_{1}=-1 & \text { for even-parity solutions, } \\
\delta_{0}=0, \varepsilon_{0}=0, \delta_{1}=1 & \text { for odd-parity solutions } \tag{2.9}
\end{array}
$$

For the heptadiagonal case one obtains in a similar way for $(A-K I)$
$\left(\begin{array}{cccccccccc}\eta_{0}-K & \mu_{0} & \tau_{0} & \sigma_{0} & 0 & 0 & 0 & 0 & \ldots & 0 \\ 270 & \eta_{1}+\mu_{1}-K & \tau_{1} & -27 & 2 & 0 & 0 & 0 & \ldots & 0 \\ -27 & \mu_{2} & \eta_{2}-K & 270 & -27 & 2 & 0 & 0 & \ldots & 0 \\ 2 & -27 & 270 & \eta_{3}-K & 270 & -27 & 2 & 0 & \ldots & 0 \\ 0 & 2 & -27 & 270 & \eta_{4}-K & 270 & -27 & 2 \ldots & 0 \\ & & & & & \ddots & & \\ 0 & & \ldots & 2 & -27 & -270 & \eta_{n-1}-K & 270 \\ 0 & & \ldots & 0 & 2 & -27 & 270 & \eta_{n}-K\end{array}\right)$
with

$$
\begin{equation*}
\eta_{k}=-180(49 / 18+V(k h)), \quad K=-180 E h^{2}, \tag{2.11}
\end{equation*}
$$

and
$\mu_{0}=540, \tau_{0}=-54, \sigma_{0}=4, \mu_{1}=-27, \tau_{1}=272, \mu_{2}=272$ for even-parity solutions,
$\mu_{0}=0, \tau_{0}=0, \sigma_{0}=0, \mu_{1}=27, \tau_{1}=268, \mu_{2}=268 \quad$ for odd-parity solutions.

It has to be noted that in each of the three cases considered, one can easily deduce the error τ, introduced by replacing $D^{2} y(x)$ by one, two or three terms of (2.1) respectively, acting on $y(x)$, i.e. for

$$
\begin{gather*}
h^{2} D^{2} y(x)=\delta^{2} y(x), \quad \tau=-\frac{1}{12} h^{2} D^{4} y(\xi) \tag{2.13}\\
h^{2} D^{2} y(x)=\left(\delta^{2}-\frac{1}{12} \delta^{4}\right) y(x), \quad \tau=\frac{1}{90} h^{4} D^{6} y(\xi) \quad \xi \in[0, R] \tag{2.14}\\
h^{2} D^{2} y(x)=\left(\delta^{2}-\frac{1}{12} \delta^{4}+\frac{1}{90} \delta^{6}\right) y(x), \quad \tau=-\frac{1}{560} h^{6} D^{8} y(\xi) . \tag{2.15}
\end{gather*}
$$

By this it is clear that the accuracy of our solutions increases roughly by a factor h^{2} by adding one more term in the approximation for D^{2}.

There exist a lot of algorithms to deduce the lowest eigenvalues and their corresponding eigenvectors for matrices of the form (2.4), (2.7) and (2.10). Since each of the constructed matrices have, with the exception of some of the first rows, a symmetric structure, it seems favourable in the first instance to transform them by means of one similarity transformation to complete symmetric ones. Following Wilkinson (1965) it is interesting for the calculation of eigenvalues of band symmetric matrices to reduce them to a tridiagonal form by preliminary transformations. We have applied this idea to the matrices (2.7) and (2.10) by using Rutishauser's (1963) method based on plane rotations. Once the matrices are reduced to a symmetric tridiagonal band form we have used the F02BEF-subroutine of the NAG library (NAG 1981) especially developed for the calculation of selected eigenvalues and corresponding eigenvectors of such matrices. The obtained eigenvectors are then afterwards normalised to unity by requiring $\int_{-R}^{K} y^{2}(x) \mathrm{d} x=1$. To reproduce these eigenvectors in a clear way, we finally have developed them in terms of an orthonormal set $\left\{u_{n} \mid n=0, \ldots, N_{\text {max }}\right\}$, the harmonic oscillator eigenfunctions defined by

$$
\begin{equation*}
u_{n}=\left[2^{n} n!\pi^{1 / 2}\right]^{-1 / 2} \mathrm{e}^{-x^{2} / 2} H_{n}(x), \tag{2.16}
\end{equation*}
$$

with H_{n} the Hermite polynomials. In fact the normalised y solutions are given by

$$
\begin{equation*}
y(x)=\sum_{n=0}^{N_{\max }} a_{n} u_{n}(x) \tag{2.17}
\end{equation*}
$$

The upper limit in this sum is fixed by the condition that $\sum_{n=0}^{N_{\max }} a_{n}^{2}$ approximates unity within a given accuracy.

3. Numerical method: applications

To study the importance of the several terms in the series expansion (2.1), we have applied the three above derived approximations for ($A-K I$), i.e. (2.4), (2.7) and (2.10), for two specific choices of λ and g values for which either exact or a lot of numerical values for the energy values of the low-lying states are available in the literature. For this comparison we have kept $R=10.0$ and $h=0.05$. The influence of the R value on the final results will be discussed later. Note that by the above choices
for h and R the maximum dimension of the occurring matrices is 200×200. The obtained energy values ($E_{n}, n=1,5$) for the case ($\lambda=1.0, g=1.0$) are given in table 1 and compared with the previously calculated values of Mitra (1978), Bessis and Bessis (1980), Galicia and Killingbeck (1979) (corrected results mentioned in Lai and Lin (1982)) and Lai and Lin (1982). By comparing the results derived in the tri-, pentaand hepta-diagonal approaches respectively, one observed approximately an improvement of accuracy of three significant figures, a value which is of the same order of magnitude as predicted by the theory, i.e. $h^{2}=(0.05)^{2}$. It is clear that our results are in better agreement with those of Mitra and of Galicia and Killingbeck than with those of Bessis and Bessis in the considered (λ, g) region; this fact has also been observed by Lai and Lin (1982). Our results in the heptadiagonal approach (for $\lambda=1.0$ and $g=1.0$ as well as for $\lambda=g=0.0$) have an overall accuracy of eight significant figures.

It is evident that the heptadiagonal form yields the most accurate results. All further calculations are performed in that approach. To show the dependence of the results on the choice of the R value, we present in table 2, again for $\lambda=1.0$ and $g=1.0$, the

Table 1. Comparison of the results respectively derived in the tri-, penta- and hepta-diagonal approach for the potential (1.1) with exact and previously derived data for the case ($\lambda=1.0$, $g=1.0$) and ($\lambda=0, g=0$).

	$\lambda=1.0 \mathrm{~g}=1.0$				
	E_{1}	E_{2}	E_{3}	E_{4}	E_{5}
tridiagonal	1.23214098	3.50647473	5.58753898	7.64401185	9.67729111
pentadiagonal	1.23235051	3.50738716	5.58977507	7.64819196	9.68402356
heptadiagonal	1.23235072	3.50738835	5.58977892	7.64820121	9.68404195
Mitra (1978)	1.23235	3.50738	5.58977	-	-
Bessis and Bessis (1980)	1.23237205	3.50742053	5.58986086	7.64831681	-
Galicia and Killingbeck (1979) \dagger	1.23235072	-	5.58977894	-	-
Lai and Lin (1982)	1.23235353	3.50739706	5.58983355	7.64906899	-
			$\lambda=0 \mathrm{~g}=0$		
	E_{1}	E_{2}	E_{3}	E_{4}	E_{5}
tridiagonal	0.99984373	2.99921853	4.99796789	6.99609153	8.99358913
pentadiagonal	0.99999987	2.99999909	4.99999675	6.99999181	8.99998324
heptadiagonal	1.00000000	3.00000000	4.99999999	6.99999998	8.99999994
exact	1	3	5	7	9

+ Corrected results reported in Lai and Lin (1982).

Table 2. The dependence of the results on the choice of the R value.

R	E_{1}	E_{2}	E_{3}	E_{4}	E_{5}
4.0	1.23235155	3.50742442	5.59027352	7.65278469	9.70847944
6.0	1.23235072	3.50738835	5.58977892	7.64820121	9.68404196
10.0	1.23235072	3.50738835	5.58977892	7.64820121	9.68404195

results obtained with step length $h=0.05$ but with three different R values, i.e. $R=4.0$, 6.0 and 10.0 . This shows that for this particular (λ, g) combination the first eight figures of the $E_{n}(n=1,5)$ results do not change anymore whenever $R \geqslant 6.0$. Of course one should control for each parameter choice the influence of the chosen R value on the results. Further in this paper we shall keep R fixed at 10.0 and $h=0.05$.

In order to have an idea about the accuracy of the described method we compare in table 3 our results for different typical (λ, g) combinations with previous results. For small values of λ we certainly reproduce seven significant digits, while for large λ values our results are a little less accurate, which should be attributed to our particular choice for the R parameter. For each of the mentioned energies we also have derived the corresponding eigenvectors. The coefficients a_{n} as defined in (2.17) are not given here, but are available on request to the authors.

Table 3. Calculated values of the energy $E_{n}(n=1,5)$ for the potential (1.1) obtained from five different methods: (a) the present work, (b) Mitra (1978), (c) Bessis and Bessis (1980), (d) Lai and Lin (1982), (e) Killingbeck (1979).

		$\begin{aligned} & \lambda=0.1 \\ & g=0.1 \end{aligned}$	$\begin{aligned} & \lambda=0.1 \\ & g=100.0 \end{aligned}$	$\begin{aligned} & \lambda=100.0 \\ & g=0.1 \end{aligned}$	$\begin{aligned} & \lambda=100.0 \\ & g=100.0 \end{aligned}$	$\begin{aligned} & \lambda=10.0 \\ & g=10.0 \end{aligned}$
E_{1}	a	104317371	1.00084110	9.97617831	1.83633444	1.58002233
	b	1.04317	1.00084	9.97618	1.8364	1.58002
	c	1.04317371	1.0008411	9.97618009	1.8363850	1.5800249
	d	1.04317371	-	9.97618009	-	-
	e	1.04317408	1.00084143	9.976180	1.8363373	-
E_{2}	a	3.12008186	3.00098318	29.78117575	3.98309836	3.87903683
	b	3.12008	3.00098	29.78119	3.9831	3.87903
	c	3.12008186	3.0009831	29.7811911	3.9830992	3.8790372
	d	3.12008186	-	29.78119111	-	-
E_{3}	a	5.18109478	5.00092754	49.29262358	5.92832790	5.83276752
	b	5.18109	5.00093	49.29269	5.928	5.83277
	c	5.18109479	5.0009257	49.2926905	5.9283525	5.8327692
	d	5.18109479	-	49.29269050	-	-
	e	5.18109506	5.0009278	49.29269	5.9283293	-
E_{4}	a	7.23100995	7.00098447	68.51286108	7.98444354	7.90315413
	c	7.23100998	7.0009845	68.5130522	7.9844448	7.9031549
	d	7.23100998	-	68.51306223	-	-
E_{5}	a	9.27281691	9.00094853	87.44423367	9.94916038	988229866
	e	9.272818	9.000948	87.4447	9.949162	-

Several authors have studied a class of exact solutions for eigenvalues and eigenvectors of the Schrödinger equation (1.2). These solutions all correspond to negative λ values. They yield interesting material for testing the validity and accuracy of our numerical method. Let us compare some of these exact even-parity solutions as deduced by Flessas (1981) with our numerical results. His lowest-lying solution is given in terms of g as follows:

$$
\begin{equation*}
\lambda=-2 g(2+g) \tag{3.1}
\end{equation*}
$$

$$
\begin{align*}
& E_{1}(g)=1-2 g \tag{3.2}\\
& y(x)=\exp \left(-x^{2} / 2\right) a\left(1+g x^{2}\right)=\alpha u_{0}(x)+\beta u_{2}(x)
\end{align*}
$$

where a is a normalisation factor and the $u_{n}(n=0,2)$ are defined in (2.16). The ratio α / β can also be expressed in terms of g, i.e.

$$
\begin{equation*}
\alpha / \beta=(2+g) /(\sqrt{2} g) . \tag{3.3}
\end{equation*}
$$

Flessas' second energy level corresponds with

$$
\begin{align*}
& \lambda=-7 g^{2}-6 g \pm g\left(25 g^{2}-12 g+4\right)^{1 / 2}, \tag{3.4}\\
& E_{2}(g)=9+\lambda / g=3-7 g \pm\left(25 g^{2}-12 g+4\right)^{1 / 2}, \tag{3.5}\\
& \begin{aligned}
y(x) & =\exp \left(-x^{2} / 2\right) a^{\prime}\left[1-(8 g+\lambda) /(2 g) x^{2}+2 g(8 g+\lambda) /\left(12 g^{2}+\lambda\right) x^{4}\right] \\
& =\alpha^{\prime} u_{0}(x)+\beta^{\prime} u_{2}(x)+\gamma^{\prime} u_{4}(x),
\end{aligned}
\end{align*}
$$

where a^{\prime} is again a normalisation factor and

$$
\begin{align*}
& \alpha^{\prime} / \beta^{\prime}=\left(\lambda+6 g^{2}+4 g\right) /[\sqrt{2}(8 g+\lambda)], \tag{3.6}\\
& \beta^{\prime} / \gamma^{\prime}=-\lambda /\left(4 \sqrt{3} g^{2}\right) . \tag{3.7}
\end{align*}
$$

For the odd-parity levels Varma (1981) obtains the following relations

$$
\begin{align*}
& \lambda=-2 g(2+3 g) \tag{3.8}\\
& E_{1}^{\prime}(g)=7+\lambda / g=3(1-2 g) \tag{3.9}\\
& y(x)=\exp \left(-x^{2} / 2\right) a x\left(1+g x^{2}\right)=\alpha^{\prime \prime} u_{1}(x)+\beta^{\prime \prime} u_{3}(x)
\end{align*}
$$

with

$$
\begin{equation*}
\alpha^{\prime \prime} / \beta^{\prime \prime}=(2+3 g) /(\sqrt{6} g) \tag{3.10}
\end{equation*}
$$

and

$$
\begin{gather*}
\lambda=-13 g^{2}-6 g \pm g\left(49 g^{2}-4 g+4\right)^{1 / 2} \tag{3.11}\\
E_{2}^{\prime}(g)=11+\lambda / g=5-13 g \pm\left(49 g^{2}-4 g+4\right)^{1 / 2} \tag{3.12}\\
y(x)=\exp \left(-x^{2} / 2\right) a^{\prime} x\left\{1-(8 g+\lambda) /(6 g) x^{2}+2 g(8 g+\lambda) /\left[3\left(20 g^{2}+\lambda\right)\right] x^{4}\right\} \\
=\alpha^{\prime \prime \prime} u_{1}(x)+\beta^{\prime \prime \prime} u_{3}(x)+\gamma^{\prime \prime \prime} u_{5}(x)
\end{gather*}
$$

with

$$
\begin{align*}
& \alpha^{\prime \prime \prime} / \beta^{\prime \prime \prime}=\sqrt{6}\left(\lambda+4 g+10 g^{2}\right) / 2(8 g+\lambda) \tag{3.13}\\
& \beta^{\prime \prime \prime} / \gamma^{\prime \prime \prime}=-\lambda /\left(4 \sqrt{5} g^{2}\right) . \tag{3.14}
\end{align*}
$$

In table 4 we compare for $g=0.1$ the exact results (3.1)-(3.14) with the calculated values. As well for the energies as for the eigenstates we obtain an accuracy of at least eight significant figures. Moreover one has to realise that besides the energy value(s) which correspond for a particular g and corresponding $\lambda=\lambda(g)$ with an exactly expressible eigenstate of the polynomial type, we obtain numerically a lot more other eigenvalues, which have no exact counterparts. For example for $g=0.1$ and $\lambda=-0.42$ we reproduce (as can be seen in table 4) quite nicely Flessas' exact solution $E_{1}(g)$, but we also find levels at $4.19789589,7.82009762,11.54862892, \ldots$ etc, whose eigenstates have a complex structure in the sense that at least twelve $u_{n}(x)(n=$ $0,2, \ldots, 22$) are present in the expansion of the type (2.17). Note also that for this

Table 4. Comparison of certain exact energies and eigenvectors associated with the potential (1.1) as derived by Flessas (1981) and Varma (1981) with our numerical predictions.

Flessas (1981) $\mathrm{g}=0.1$			Calculated values
Formula		Exact values	
(3.1)	λ	-0.42	-0.42
(3.2)	E_{1}	0.8	0.80000000
(3.3)	α / β	$21 / \sqrt{2} \simeq 14.84924241$	14.84924264
(3.4) (plus sign)	λ	$-0.67+0.1 \sqrt{3.05} \simeq-0.49535751$	-0.495 35751
(3.5) (plus sign)	E_{2}	$2.3+\sqrt{3.05}=4.04642492$	4.04642492
(3.6)	$\alpha^{\prime} / \beta^{\prime}$	$\simeq-0.08206844$	-0.082 06844
(3.7)	$\beta^{\prime} / \gamma^{\prime}$	$\simeq 7.14986976$	7.14986993
Varma (1981) $g=0.1$			
Formula		Exact values	values
(3.8)	λ	-0.46	-0.46
(3.9)	E_{1}^{\prime}	2.4	2.40000000
(3.10)	$\alpha^{\prime \prime} / \beta^{\prime \prime}$	$23 / \sqrt{6} \simeq 9.38971068$	9.38971080
(3.11) (plus sign)	λ	$-0.73+0.1 \sqrt{4.09} \simeq-0.52776252$	-0.52776252
(3.12) (plus sign)	E_{2}^{\prime}	$3.7+\sqrt{4.09} \simeq 5.72237484$	5.72237483
(3.13)	$\alpha^{\prime \prime \prime} / \beta^{\prime \prime \prime}$	$\simeq-0.12489830$	-0.12489830
(3.14)	$\beta^{\prime \prime \prime} / \gamma^{\prime \prime \prime}$	$=5.90056431$	5.90056456

special class of solutions with $\lambda<-1$ the possibility exists to obtain finally negative energy values.

It is evident that the presented method can be used for a variety of potential forms. As an example we consider the potential

$$
\begin{equation*}
V(x)=\mu x^{2}+\lambda x^{4}, \tag{3.15}
\end{equation*}
$$

Table 5. Calculated values of the energies $E_{n}(n=1,5)$ for the potential (3.15) obtained from four different methods: (a) the present work, (b) Chan and Stellman (1963), (c) Killingbeck (1985), (d) Biswas et al (1973).

		$\mu=0.0 \lambda=1.0$		$\mu=1.0 \lambda=1.0$
E_{1}	a	1.06036209	a	1.39235164
	b	1.060362	d	1.39235164153029
	c	1.06036209	c	1.39235164
E_{2}	a	3.79967302	a	4.64881268
	b	3.799657	d	4.64881270
	c	3.79967303	c	4.64881270
E_{3}	a	7.45569786	a	8.65504985
	b	7.455702	d	8.6550499
E_{4}	a	11.64474516	a	13.15680342
	b	11.64475	d	13.1568038
E_{5}	a	16.26182485	a	18.05755589
		-	d	18.0575574

which is of particular interest in molecular physics. Biswas et al (1973) have derived its ground state as well as the excited energy levels using the Hill determinants. By using the Hellmann-Feynman theorem combined with power series expansion and finite difference approaches Killingbeck (1985) also derived some very accurate eigenvalues. In table 5 we compare our results for two typical (μ, λ) values, i.e. ($0.0,1.0$) and ($1.0,1.0$) with previously derived results. Again we have chosen $h=0.05, R=10.0$ and we have considered the heptadiagonal approach. As can be observed we obtain at least an accuracy of seven significant figures.

4. Summary

In this paper we have presented a purely numerical method for the determination of the solutions of a Schrödinger equation. We have paid special attention to the potential $V(x)=x^{2}+\lambda x^{2} /\left(1+g x^{2}\right)$ and have shown that our method is applicable as well for positive λ values as negative ones. In the heptadiagonal approach we globally obtain seven to eight significant figures. In the cases where exact eigenvalues and eigenvectors are known we reproduce both quantities very satisfactorily. We have noted that the method can be used for other potentials as well.

Acknowledgment

We wish to thank Dr H De Meyer for helpful comments and critical discussions.

References
Bessis N and Bessis G 1980 J. Math. Phys. 212780
Biswas S N, Datta K, Saxena R P, Srivastava P K and Varma V S 1973 J. Math. Phys. 141190
Chan S and Stellman D 1963 J. Molec. Spectrosc. 10278
Flessas G 1981 Phys. Lett. 83A 121
- 1982 J. Phys. A: Math. Gen. 15 L97
Fröberg C 1979 Introduction to Numerical Analysis (New York: Addison-Wesley)
Galicia S and Killingbeck J 1979 Phys. Lett. 71A 17
Haken H 1970 in Encyclopedia of Physics vol XXV/2C (Princeton, NJ: Van Nostrand)
Kaushal R 1979 J. Phys. A: Math. Gen. 12 L253
Killingbeck J 1979 Comput. Phys. Commun. 18211
-_ 1985 J. Phys. A: Math. Gen. 18245
Lai C and Lin H 1982 J. Phys. A: Math. Gen. 151495
Mitra A 1978 J. Math. Phys. 192018
NAG Fortran User Manual (Mark 8) 1981 (Numerical Algorithms Group, Oxford)
Risken H and Vollmer H 1967 Z. Phys. 201323
Rutishauser H 1963 Proc. Am. Math. Soc. Symp. in Applied Mathematics 15219
Varma V 1981 J. Phys. A: Math. Gen. 14 L489
Whitehead R, Watt A, Flessas G and Nagarajan M 1982 J. Phys. A: Math. Gen. 151217
Wilkinson J 1965 The Algebraic Eigenvalue Problem (Oxford: Clarendon)

